Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 31, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167999

RESUMEN

Triple-negative breast cancer (TNBC) treatment is challenging and frequently characterized by an aggressive phenotype and low prognosis in comparison to other subtypes. This paper presents fabricated implantable drug-loaded microporous poly-di-methyl-siloxane (PDMS) devices for the delivery of targeted therapeutic agents [Luteinizing Hormone-Releasing Hormone conjugated paclitaxel (PTX-LHRH) and Luteinizing Hormone-Releasing Hormone conjugated prodigiosin (PG-LHRH)] for the treatment and possible prevention of triple-negative cancer recurrence. In vitro assessment using the Alamar blue assay demonstrated a significant reduction (p < 0.05) in percentage of cell growth in a time-dependent manner in the groups treated with PG, PG-LHRH, PTX, and PTX-LHRH. Subcutaneous triple-negative xenograft breast tumors were then induced in athymic female nude mice that were four weeks old. Two weeks later, the tumors were surgically but partially removed, and the device implanted. Mice were observed for tumor regrowth and organ toxicity. The animal study revealed that there was no tumor regrowth, six weeks post-treatment, when the LHRH targeted drugs (LHRH-PTX and LHRH-PGS) were used for the treatment. The possible cytotoxic effects of the released drugs on the liver, kidney, and lung are assessed using quantitative biochemical assay from blood samples of the treatment groups. Ex vivo histopathological results from organ tissues showed that the targeted cancer drugs released from the implantable drug-loaded device did not induce any adverse effect on the liver, kidneys, or lungs, based on the results of qualitative toxicity studies. The implications of the results are discussed for the targeted and localized treatment of triple negative breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Siloxanos , Receptores LHRH/genética , Ratones Desnudos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Hormona Liberadora de Gonadotropina/farmacología , Línea Celular Tumoral
2.
Sci Rep ; 10(1): 8212, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427904

RESUMEN

Bulk chemotherapy and drug release strategies for cancer treatment have been associated with lack of specificity and high drug concentrations that often result in toxic side effects. This work presents the results of an experimental study of cancer drugs (prodigiosin or paclitaxel) conjugated to Luteinizing Hormone-Releasing Hormone (LHRH) for the specific targeting and treatment of triple negative breast cancer (TNBC). Injections of LHRH-conjugated drugs (LHRH-prodigiosin or LHRH-paclitaxel) into groups of 4-week-old athymic female nude mice (induced with subcutaneous triple negative xenograft breast tumors) were found to specifically target, eliminate or shrink tumors at early, mid and late stages without any apparent cytotoxicity, as revealed by in vivo toxicity and ex vivo histopathological tests. Our results show that overexpressed LHRH receptors serve as binding sites on the breast cancer cells/tumor and the LHRH-conjugated drugs inhibited the growth of breast cells/tumor in in vitro and in vivo experiments. The inhibitions are attributed to the respective adhesive interactions between LHRH molecular recognition units on the prodigiosin (PGS) and paclitaxel (PTX) drugs and overexpressed LHRH receptors on the breast cancer cells and tumors. The implications of the results are discussed for the development of ligand-conjugated drugs for the specific targeting and treatment of TNBC.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Hormona Liberadora de Gonadotropina/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Antineoplásicos/química , Línea Celular Tumoral , Femenino , Humanos , Ratones , ARN Interferente Pequeño/genética , Receptores LHRH/genética , Receptores LHRH/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...